Dendritic spine formation and pruning: common cellular mechanisms?

نویسندگان

  • I Segal
  • I Korkotian
  • D D Murphy
چکیده

The recent advent of novel high-resolution imaging methods has created a flurry of exciting observations that address a century-old question: what are biological signals that regulate formation and elimination of dendritic spines? Contrary to the traditional belief that the spine is a stable storage site of long-term neuronal memory, the emerging picture is of a dynamic structure that can undergo fast morphological variations. Recent conflicting reports on the regulation of spine morphology lead to the proposal of a unifying hypothesis for a common mechanism involving changes in postsynaptic intracellular Ca2+ concentration, [Ca2+]i: a moderate rise in [Ca2+]i causes elongation of dendritic spines, while a very large increase in [Ca2+]i causes fast shrinkage and eventual collapse of spines. This hypothesis provides a parsimonious explanation for conflicting reports on activity-dependent changes in dendritic spine morphology, and might link these changes to functional plasticity in central neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic spines shaped by synaptic activity.

A recent series of exciting observations, using novel high-resolution time-lapse imaging of living cells, has provoked a major shift in our understanding of the dendritic spine, from a stable storage site of long-term memory to a dynamic structure that undergoes rapid morphological variations. Through these recent observations, the molecular mechanisms underlying spine plasticity are beginning ...

متن کامل

Functional plasticity triggers formation and pruning of dendritic spines in cultured hippocampal networks.

Despite widespread interest in dendritic spines, little is known about the mechanisms responsible for spine formation, retraction, or stabilization. We have now found that a brief exposure of cultured hippocampal neurons to a conditioning medium that favors activation of the NMDA receptor produces long-term modification of their spontaneous network activity. The conditioning protocol enhances c...

متن کامل

Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines.

Dendritic spines undergo the processes of formation, maturation, and pruning during development. Molecular mechanisms controlling spine maturation and pruning remain largely unknown. The gene for brain-derived neurotrophic factor (BDNF) produces two pools of mRNA, with either a short or long 3' untranslated region (3' UTR). Our previous results show that short 3' UTR Bdnf mRNA is restricted to ...

متن کامل

Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex

Structural plasticity governs the long-term development of synaptic connections in the neocortex. While the underlying processes at the synapses are not fully understood, there is strong evidence that a process of random, independent formation and pruning of excitatory synapses can be ruled out. Instead, there must be some cooperation between the synaptic contacts connecting a single pre- and p...

متن کامل

Rapid plasticity of dendritic spine: hints to possible functions?

Contrary to a century-old belief that dendritic spines are stable storage sites of long term memory, the emerging picture from a recent flurry of exciting observations using novel high resolution imaging methods of living cells in culture is that of a dynamic structure, which undergoes fast morphological changes over periods of hours and even minutes. Concurrently, the nature of stimuli which c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trends in neurosciences

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2000